PH2

Question			Marking details	Marks Available
1	(a)	(i)	I. 2.0 [m]/2.5 or clear equivalent	1
			II. The same	1
		(ii)	I. $\quad 5.0 \mathrm{~Hz} / \mathrm{s}^{-1}$ UNIT	1
			II. $y / \mathrm{m} \mid \quad$ PARTICLE B	
			Same f and A (1) Delayed by $\frac{1}{4}$ cycle (1)	2
		(iii)	$4.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ ecf	1
	(b)		Statement that f doesn't change (1), or working based on this principle (e.g. $v=5.0[\mathrm{~Hz}] \times 0.60[\mathrm{~m}]) \quad v=3.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ (1) ecf	2
			Question 1 total	[8]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 2 \& (a) \& (i) \& \begin{tabular}{l}
Waves arrive in phase at P. (1) Accept twin graphs: displacement along paths or displacement versus time at \(P\). \\
This occurs if path difference \(=[0], \lambda, 2 \lambda \ldots \ldots \ldots\) (1) Accept \(n \lambda\) Insertion of \(a, D\) and \(y\) into \(\lambda=\frac{a y}{D}\), even if powers of 10 incorrect. (1)
\[
\lambda=600 \mathrm{n}[\mathrm{~m}]
\] \\
Beams (fringes, orders) : \\
brighter / sharper or more defined or narrower / further apart / slit separation more accurately known \\
(Any \(2 \times(1)\)) \\
Question 2 total
\end{tabular} \& 2

2

2
$[6]$

\hline
\end{tabular}

Question			Marking details	Marks Available
3	(a)	(i)	Convincing algebra, e.g. $n \frac{\lambda}{2}=L$ (1) When $\lambda=820.0 \mathrm{~nm}, \frac{2 L}{\lambda}=500$ When $\lambda=821.0 \mathrm{~nm}, \frac{2 L}{\lambda}=499.4$ (Give 1 mark if same arithmetical error in both) $n=499.00(1) \quad \text { ecf }[\text { or by implication }]$ $\lambda=821.60[\mathrm{~nm}]$ (1) No mark if previous mark not given. Less amplitude [or fewer photons...] reflected back from [partially reflecting] mirror than arrive at it. (1) (1) of the following: - Mirror not a proper node - Amplitudes of progressive waves travelling in opposite directions not equal. (Except near fully reflecting mirror). Question 3 total	2 2 2 2 2

Question			Marking details	Marks Available
8	(a)	(i)	$=5.4[\pm 0.2][\mathrm{day}]$ (1)	
			$\mathrm{P}=0.70[\pm 0.1] \times 10^{30}[\mathrm{~W}]$ (1) ecf	2
		(ii)	$I=\frac{P}{4 \pi r^{2}}$ (1) \quad [or equivalent, or by implication]	
			$r=2.6 \times 10^{20}[\mathrm{~m}]$ (1) ecf	2
			[1 mark only lost if factor of 4 omitted]	
	(b)	(i)	$\lambda_{\text {peak }}=450 \mathrm{n}[\mathrm{m}](1) \quad[\pm 10 \mathrm{~nm}]$	
			$T=6400[\mathrm{~K}]$ (1) \quad [ecf on $\lambda_{\text {peak] }}$	2
		(ii)	$A=\frac{P}{\alpha T^{4}}(1) \quad$ [transposition at any stage]	
			$=10 \times 10^{21}\left[\mathrm{~m}^{2}\right]$ (1) [or by implication] ecf on \boldsymbol{T}	
			$r=\sqrt{\frac{A}{4 \pi}}(1) \quad\left[=2.8 \times 10^{10}[\mathrm{~m}]\right] \quad[\text { or by implication }]$	
			$d=5.6 \times 10^{10}[\mathrm{~m}]$ (1) ecf (missing factor of 4 loses 1 mark)	4
			Question 8 Total	[10]

Question			Marking details	Marks Available
9	(a)	(i)	$\mathrm{e}^{-}:+1 \quad \mathrm{e}^{+}:-1 \quad$ (1) $\quad \gamma: 0$ (1)	2
		(ii)	electromagnetic : γ involvement (1) both	1
	(b)		π^{-}(1)	
			```because either charge of x = -e [accept -1] and x must be a hadron / can't be a lepton Or u number =0-1 =-1, d number =0-(-1)=1 or equivalent (1)```	
	(c)	(i)	$\mathrm{e}^{+}$or positron	1
		(ii)	Weak	1
	(d)		$\pi^{-}$[accept $\mu$ or $\left.\overline{\mathrm{u}} \mathrm{d}\right] \rightarrow \mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}}$ (accept $+\bar{v}$ )   [In fact, $\pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}$ much more likely]	1
			Question 8 Total	[8]

