PH2

Question			Marking details	Marks Available
1	(a)	(i)	I. 2.0 [m] / 2.5 or <u>clear</u> equivalent	1
			II. The same	1
		(ii)	I. $5.0 \mathrm{Hz} /\mathrm{s}^{-1}$ UNIT	1
			II. PARTICLE B 0.1 0 9.2 0.4 time/s	
			Same f and A (1) Delayed by $\frac{1}{4}$ cycle (1)	2
		(iii)	4.0 [m s ⁻¹] ecf	1
	(b)		Statement that f doesn't change (1), or working based on this principle (e.g. $v = 5.0$ [Hz] x 0.60 [m]) $v = 3.0$ [m s ⁻¹] (1) ecf Question 1 total	2 [8]

Question			Marking details	Marks Available
2	(a)		Waves arrive in phase at P. (1) Accept twin graphs: displacement along paths or displacement versus time at P.	
			This occurs if path difference = $[0]$, λ , 2λ (1) Accept $n\lambda$	2
	<i>(b)</i>	(i)	Insertion of a, D and y into $\lambda = \frac{ay}{D}$, even if powers of 10 incorrect. (1)	
			$\lambda = 600 \text{ n[m]} (1)$	2
		(ii)	Beams (fringes, orders):	2
			brighter / sharper or more defined or narrower / further apart / slit separation more accurately known (Any 2 x (1))	2
			Question 2 total	[6]

Question			Marking details	Marks Available
3	(a)		$[L] \longrightarrow [L]$ $\downarrow \stackrel{\lambda}{\leftarrow} \stackrel{\text{Or}}{\downarrow} \stackrel{\text{O}}{\downarrow} \text{$	
	(b)	(i)	Convincing algebra, e.g. $n \frac{\lambda}{2} = L(1)$ When $\lambda = 820.0$ nm, $\frac{2L}{\lambda} = 500$ (1)	2
			When $\lambda = 821.0 \text{ nm}$, $\frac{2L}{\lambda} = 499.4 \text{ (1)}$ (Give 1 mark if same arithmetical error in both)	2
		(ii)	n = 499.00 (1) ecf [or by implication] $\lambda = 821.60 [\text{nm}] (1)$ No mark if previous mark not given.	2
	(c)		Less amplitude [or fewer photons] reflected back from [partially reflecting] mirror than arrive at it. (1) + (1) of the following:	
			 Mirror not a proper node Amplitudes of progressive waves travelling in opposite directions not equal. (Except near fully reflecting mirror). 	2
			Question 3 total	[8]

Ques	stion		Marking details	Marks Available
4	(a)	(i)	1.55 $\sin c = 1.00 \sin 90^{\circ}$ (1) [or equivalent, or by implication] $c = 40^{\circ} \text{ (1)}$ First reflection (1) No ecf Rest of path (1)	2 2
	(b)	(i) (ii)	1.55 $\sin 45^\circ = 1.33 \sin w$ (1) [or equivalent, or by implication] $w = 56^\circ$ (1)	2
			Bends as shown	
		(iii)	[Sensor at] Q receives more light when water level drops and exposes lower end of rod to the air. No ecf if paths badly wrong.	1
			Question 4 Total	[8]

Question			Marking details	Marks Available
5	(a)	(i)	$d = v \times t (1)$ [Attempt to use, or by implication] $v = \frac{3.00 \times 10^8}{1.50} \text{ [m s}^{-1} \text{] (1)}$ $d = 1600 \text{ [m] (1) [Omission of } n \text{ (giving 2400 [m]) loses 1]}$ Arithmetical error loses 1 mark. Zig-zag routes [take] longer than straight. (1) (1) For one of the following:	3
	4)		 Good diagram (angles equal by eye) A continuous <u>range</u> of zig-zag routes, all of different lengths 	2
	(b)	(i) (ii)	0.14 [μ s] [\pm 0.02 μ s] PULSE AT A PULSE AT B light power 0 0.1 0.2 0.3 time / μ s leading edge 1 mark for the correct pulse on each graph. ecf from (b)(i)	2
			Question 5 Total	[8]

Question			Marking details	Marks Available
6	(a)	(i) (ii)	Maximum k.e. of emitted / photo electrons Energy of a photon[s]	1
		(iii)	[Minimum] energy needed to remove electron [from surface]. Don't accept from an atom	1
	<i>(b)</i>	(i)	I. Gradient calculation attempted (1) – no penalty for wrong powers of 10.	
			6.6 [± 0.3] x10 ⁻³⁴ [J s] (1) agreeing with working	2
			II. $f_{\text{thresh}} = 4.4 \times 10^{14} \text{ Hz}$ (1) [± 0.1x10 ¹⁴ Hz] or valid algebraic method $\phi = 2.9 \times 10^{-19} \text{ J}$ UNIT (1) ecf	2
		(ii)	I. K.E.max /10-19 J 1.0 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	
			frequency / 10 ¹⁴ Hz Correct point (1), parallel line (1)	2
			II. Ultraviolet [or UV]	1
			III. Lithium has higher work function / needs more energy to remove an electron	1
			Question 6 Total	[11]

Ques	stion		Marking details	Marks Available
7	(a)	(i)	P and U: zero or very low and / or O: 100%	1
		(ii)	Absorption (accept excitation) (1): electron promoted from O to U (1)	2
	(b)	(i)	More electrons in U than O or more electrons in higher level	1
		(ii)	level P \longrightarrow level U \longrightarrow 2.10 \times 10-19 J	1
		(iii)	level O	
			 Emitting photon: so two photons where one previously (or by implication) (1). (1) For one of the following: Atom / electron drops [from U] to O. Incident photon energy must be 2.10 x 10⁻¹⁹ J or equivalent Process happens repeatedly as photons traverse cavity to and fro 	
		(iv)	• Stimulated photon in phase with incident photon $\lambda = \frac{hc}{\Delta E} \underline{\text{or}} \lambda = \frac{c}{f} \text{and} f = \frac{\Delta E}{h} \underline{\text{or}} \text{equivalent or by implication (1)}$	4
			$\lambda = 950 \text{ n[m]} (1)$	2
	(c)		Electrons in lower level drop [spontaneously] to ground state (1) (accept de-excite)	
			Making population inversion easier to maintain or lowering number of electrons in lower level or making photon absorption less likely. (1)	2
			[or equivalent]	
			Question 7 Total	[13]

Que	stion	ı	Marking details	Marks Available
8	(a)	(i)	$= 5.4 [\pm 0.2] [day] (1)$	
			$P = 0.70 \ [\pm 0.1] \ x 10^{30} \ [W] \ (1) \ ecf$	2
		(ii)	$I = \frac{P}{4\pi r^2} $ (1) [or equivalent, or by implication]	
			$r = 2.6 \times 10^{20} [\text{m}] (1)$ ecf	2
			[1 mark only lost if factor of 4 omitted]	
	(b)	(i)	$\lambda_{\text{peak}} = 450 \text{ n[m]} (1) [\pm 10 \text{ nm}]$	
			$T = 6400 [K] (1)$ [ecf on λ_{peak}]	2
		(ii)	$A = \frac{P}{\alpha T^4} (1)$ [transposition at any stage]	
			$= 10 \times 10^{21} [\text{m}^2] (1) \text{[or by implication]} \text{ecf on } T$	
			$r = \sqrt{\frac{A}{4\pi}}$ (1) [= 2.8 x 10 ¹⁰ [m]] [or by implication]	
			$d = 5.6 \times 10^{10} [\text{m}] \text{ (1) ecf (missing factor of 4 loses 1 mark)}$	4
			Question 8 Total	[10]

© WJEC CBAC Ltd.

Ques	Question		Marking details	Marks Available
9	(a)	(i)	$e^{-}:+1 \qquad e^{+}:-1 (1) \qquad \gamma:0 (1)$	2
		(ii)	electromagnetic : γ involvement (1) both	1
	(b)		$\pi^{-}(1)$	
			because either charge of $x = -e$ [accept -1] and x must be a hadron / can't be a lepton	
			Or u number = 0 - 1 = -1, d number = 0 - (-1) = 1 or equivalent (1)	2
	(c)	(i)	e ⁺ or positron	1
		(ii)	Weak	1
	(d)		$\pi^{-}[\text{accept } \mu \text{ or } \overline{\mathbf{u}}\mathbf{d}] \rightarrow e^{-} + \overline{\nu}_{e}(\text{accept } + \overline{\nu})$ [In fact, $\pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu}$ much more likely]	1
			Question 8 Total	[8]